邵曉鵬

邵曉鵬

邵曉鵬,1973年生,博士,教授,博士生導師,現任物理與光電工程學院執行院長,山東威海人。分別於1997年、2001年和2005年於西安電子科技大學獲得光電子技術專業學士學位、物理電子學專業碩士學位和光學工程專業博士學位。

基本介紹

  • 中文名:邵曉鵬
  • 外文名:Xiao-peng shao
  • 國籍:中國
  • 民族:漢
  • 出生地:山東威海
  • 出生日期:1973年
  • 畢業院校:西安電子科技大學
個人簡介,研究方向,代表論文,

個人簡介

從1997年開始在物理與光電工程學院工作至今,主要從事新體制光電成像技術(隨機散射介質成像、超衍射極限成像、超解析度成像和偏振成像等),光電圖像處理與模式識別(光電成像在工業中的套用、遙感圖像處理和高光譜圖像處理),光電儀器研製與測試(精密光電測試、成像器件測試與儀器研製)等方向的研究。承擔了多項重要課題,年均經費在500萬元以上。包括國家自然科學基金、863專項課題、國防重點實驗室基金、國防預研基金項目及橫向項目等,同時與中科院光電研究院、中科院西安光機所、中航618所、中電53所、中電41所、兵器203所、兵器205所、航天8358所等保持良好合作關係;發表SCI和EI科研論文百餘篇。2001年、2005年被評為校級“優秀青年教師”、“十佳青年教師”,曾榮獲2018年陝西省創新人才推進計畫中青年科技創新領軍人才稱號,軍隊級科技進步二等獎、信息產業部科技進步三等獎和航天工業總公司科技進步二等。現為陝西省創新人才推進計畫中青年科技創新領軍人才,軍委/裝發技術某專業組專家,紅外探測器技術航空科技重點實驗室學術委員,中科院航空光學成像與測量重點實驗室學術委員,中國宇航學會光電委員會常務委員,中國宇航空間光電委員會委員,中國兵器光電子專業委員會委員,OSA Member, SPIE Member。2009年7月至2010年7月,以訪問學者身份留學喬治亞理工學院(Georgia Institute of Technology),並在2016年11月至2016年12月以高級訪問學者留學巴黎高等師範學院(École normale supérieure,ENS),研究方向:計算成像,圖像處理中的數學問題。

研究方向

  1. 新體制光電成像技術(隨機散射介質成像、超衍射極限成像、超解析度成像和量子成像等)。
  2. 光電圖像處理與模式識別(光電成像在工業中的套用、遙感圖像處理和高光譜圖像處理)。
  3. 光電儀器研製與測試(精密光電測試、成像器件測試與儀器研製)。
主持和參加的科研項目
1 紅外紋理生成方法研究,國家自然科學基金
2 數字圖像實時採集系統,863專項課題 ;
3 可見光仿真目標及星空背景的仿真模型及資料庫研究,國防重點實驗室基金項目;
4 地面背景動態紅外圖像模型,國防預研基金項;
5 基於時域剖面線的弱小目標檢測技術研究,陝西省自然科學基金
6 運動實時分析系統,橫向項目
7 紅外成像導引頭虛擬視場樣機與軟體,橫向項目;
8 球類運動規則數位化制定方法研究,橫向項目;
9 損耗儀攝像系統,橫向項目;
10 雷射光斑信號採集裝置與處理系統,橫向項目;
11 高精度諧振腔損耗儀,橫向項目;
承擔的教學任務
C程式設計(本科生)
軟體技術基礎(本科生)
微機信息管理與多媒體技術(本科生)
光電圖像處理與分析(碩士生和博士生)

代表論文

(1)Liu, F., Wei, Y., Han, P., Yang, K., Bai, L., and Shao, X.(2019). Polarization-based exploration for clear underwater vision in natural illumination.Optics express,27(3), 3629-3641.
(2)Liu, F., Han, P., Wei, Y., Yang, K., Huang, S., Li, X., ..., andShao, X.(2018). Deeply seeing through highly turbid water by active polarization imaging.Optics letters,43(20), 4903-4906.
(3)Liu, F., Han, P., Wang, Y., Li, X., Bai, L., and Shao, X. (2018). Super resolution reconstruction of infrared images based on classified dictionary learning.Infrared Physics & Technology,90, 146-155.
(4)Liu, F., Han, P., Wei, Y., Zhang, G., Li, D., and Shao, X. (2018, September). Polarization Imaging Through Highly turbid Water. InLaser Science(pp. JW3A-129). Optical Society of America.
(5)Huang, S., Liu, F., Han, P., Li, X., Li, X., and Shao, X. (2018, September). Surface Normals Correction by Removing Specular Reflection for 3D Polarization Imaging. InFrontiers in Optics(pp. JTu2A-135). Optical Society of America.
(6)Wang, J., Li, W., Liu, J., Sun, X., Guo, C., and Shao, X.(2018, September). Programmable Multiwavelength Achromatic Focusing Through Scattering Media. InLaser Science(pp. JTu2A-134). Optical Society of America.
(7)Zhu, L., Liu, J., Feng, L., Guo, C., Wu, T., and Shao, X.(2018). Recovering the spectral and spatial information of an object behind a scattering media.OSA Continuum,1(2), 553-563.
(8)Guo, C., Liu, J., Wu, T., Zhu, L., and Shao, X. (2018). Tracking moving targets behind a scattering medium via speckle correlation.Applied optics,57(4), 905-913.
(9)Liu, J., Wang, J., Li, W., Sun, X., Zhu, L., Guo, C., and Shao, X.(2018). Programmable multiwavelength achromatic focusing and imaging through scattering media.IEEE Photonics Journal,10(5), 1-1
(10)Wu T, Dong J, and Shao X*, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity [J]. Optics Express, 2017, 25(22): 27182-27194.
(11)Gong R, Wang Y, Cai Y, and Shao X*. How to deal with color in super resolution reconstruction of images [J]. Optics Express, 2017, 25(10): 11144-11156.
(12)Juanjuan Zheng, Peng Gao, and Shao X*, et al. Opposite-view digital holographic microscopy with autofocusing capability [J]. Scientific Reports, 2017.
(13)Zheng J, Gao P, and Shao X, et al. Refractive index measurement of suspended cells using opposed-view digital holographic microscopy [J]. Applied Optics, 2017, 56(32), 9000-9005.
(14)Han P, Liu F, Yang K, and Shao X*, et al. Active underwater descattering and image recovery [J]. Applied Optics, 2017, 56(23), 6631-6638.
(15)Wu T, Katz O, and Shao X, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis [J]. Optics Letters, 2016, 41(21):5003.
(16)Li H, Wu T, Liu J, and Shao X*, et al. Simulation and experimental verification for imaging of gray-scale objects through scattering layers [J]. Applied Optics, 2016, 55(34):9731.
(17)Gong C, Wu T, Liu J, and Shao X*,et al. Focusing of light through turbid media by curve fitting optimization [J]. Optical Engineering, 2016, 55(12):123105.
(18)Gong C, and Shao X*, Wu T. Total variation optimization for imaging through turbid media with transmission matrix [J]. Optical Engineering, 2016, 55(12):121703.
(19)Liu F, and Shao X*, Xu J, et al. Design of a circular polarization imager for contrast enhancement in rainy conditions [J]. Applied Optics, 2016, 55(32):9242.
(20)Liu F, Cao L, and Shao X*, et al. Polarimetric dehazing utilizing spatial frequency segregation of images [J]. Applied Optics, 2015, 54(27):8116-8122.
(21)Liu F, and Shao X*, Han P. Detection of infrared stealth aircraft through their multispectral signatures [J]. Optical Engineering, 2014, 53(9):094101.
(22)Tengfei Wu, and Shao X*, Changmei Gong, Huijuan Li, Jietao Liu. High-efficiency imaging through scattering media in noisy environments via sparse image reconstruction [J]. Optical Engineering, 2015, 54(11): 113111-113111.
(23)Tengfei Wu, and Shao X*, Changmei Gong, Weijia Dai. Imaging through a highly scattering medium with structural similarity and genetic algorithm [J]. Optical Engineering, 2014, 53(10): 103101-103101.
(24)Shao X*, Tengfei Wu, Changmei Gong. Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model[J]. Optical Engineering, 2013, 52(11): 113104-113104.

相關詞條

熱門詞條

聯絡我們